Posts Tagged ‘phenotyping’

New Manual: Management of drought stress in field phenotyping

by Carolyn Cowan

Since 1900, more than 2 billion people have been affected by drought worldwide, according to the FAO. Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.

A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops that will help to ensure drought screening trials yield accurate and precise data for use by breeding programs. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.

Improved Maize to Boost Yields in Nitrogen-starved African Soils

Farmer applying fertilizer2Sub-Saharan African farmers typically apply less than 20 kilograms of fertilizer per hectare of cropland — far less than their peers in any other region of the world. In 2014, partners in the Improved Maize for African Soils (IMAS) project developed 41 Africa-adapted maize varieties that respond better to low amounts of nitrogen fertilizer and are up for release in nine African countries through 24 seed companies.

Turbo-charging the breeding process

CIMMYT Synthetic VarietyTo accelerate the breeding cycle and continually develop the improved wheat varieties needed to meet global needs, novel approaches are needed to extend conventional selection methods, said Dr. Jesse Poland, an assistant professor at Kansas State University and director of the Feed the Future Innovation Lab for Applied Wheat Genomics, in his presentation on “Genomic Selection and Precision Phenotyping” at the Borlaug Summit on Wheat for Food Security.

However, each new technology can only be effective in combination with others, meaning that the disciplines of genetics, physiology, engineering and bioinformatics must come together in order to advance on the fundamental concepts of breeding established by Dr. Norman Borlaug more than 50 years ago.