CIMMYT and UAS-Bangalore to establish a maize doubled haploid facility in Karnataka, India


Representatives from CIMMYT and UAS-Bangalore signed the collaboration agreement on February 18, 2019.

The International Maize and Wheat Improvement Center (CIMMYT) and the University of Agricultural Sciences-Bangalore (UAS-Bangalore) have signed a collaboration agreement for establishing a maize doubled haploid (DH) facility at the Agricultural Research Station in Kunigal (ARS-Kunigal), Tumkur district, Karnataka state, India.

Insights into breeding strategies for biofortification of maize with zinc and provitamin A

by Carolyn Cowan

Biofortification is at the forefront of efforts to address hidden hunger, the consumption of a sufficient number of calories, but still lacking essential nutrients such as vitamin A, iron or zinc.  Biofortification increases the amount of vitamins and minerals in a crop through conventional plant breeding or agronomic practices, and can generate measurable health and nutrition improvements in consumer populations. Researchers from the International Maize and Wheat Improvement Center (CIMMYT) have recently published two studies that comprehensively review current breeding strategies for biofortification of maize with zinc and provitamin A that provide a working outline for maize breeders. The provitamin A study was developed with researchers from the University of Agriculture Faisalabad, Pakistan.

The Molecular Maize Atlas encourages genetic diversity


Maize ears from CIMMYT’s collection, showing a wide variety of colors and shapes. CIMMYT’s germplasm bank contains about 28,000 unique samples of cultivated maize and its wild relatives, teosinte and Tripsacum. These include about 26,000 samples of farmer landraces — traditional, locally-adapted varieties that are rich in diversity. The bank both conserves this diversity and makes it available as a resource for breeding. (Photo: Xochiquetzal Fonseca/CIMMYT)

With so much germplasm to categorize, what’s the best way to label them? Seeds of Discovery is working on the answer.

Imagine walking through a grocery store, doing your weekly shopping. Everything seems normal, but as you pick up a can, there’s no label. There’s nothing to tell you what the product is, and now you can’t reliably choose anything to eat this week.

New Manual: Management of drought stress in field phenotyping

by Carolyn Cowan

Since 1900, more than 2 billion people have been affected by drought worldwide, according to the FAO. Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.

A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops that will help to ensure drought screening trials yield accurate and precise data for use by breeding programs. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.